Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(12): e1011793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064525

RESUMO

Like all herpesviruses, cytomegaloviruses (CMVs) code for many immunomodulatory proteins including chemokines. The human cytomegalovirus (HCMV) CC chemokine pUL128 has a dual role in the infection cycle. On one hand, it forms the pentameric receptor-binding complex gHgLpUL(128,130,131A), which is crucial for the broad cell tropism of HCMV. On the other hand, it is an active chemokine that attracts leukocytes and shapes their activation. All animal CMVs studied so far have functionally homologous CC chemokines. In murine cytomegalovirus (MCMV), the CC chemokine is encoded by the m131/m129 reading frames. The MCMV CC chemokine is called MCK2 and forms a trimeric gHgLMCK2 entry complex. Here, we have generated MCK2 mutant viruses either unable to form gHgLMCK2 complexes, lacking the chemokine function or lacking both functions. By using these viruses, we could demonstrate that gHgLMCK2-dependent entry and MCK2 chemokine activity are independent functions of MCK2 in vitro and in vivo. The gHgLMCK2 complex promotes the tropism for leukocytes like macrophages and dendritic cells and secures high titers in salivary glands in MCMV-infected mice independent of the chemokine activity of MCK2. In contrast, reduced early antiviral T cell responses in MCMV-infected mice are dependent on MCK2 being an active chemokine and do not require the formation of gHgLMCK2 complexes. High levels of CCL2 and IFN-γ in spleens of infected mice and MCMV virulence depend on both, the formation of gHgLMCK2 complexes and the MCK2 chemokine activity. Thus, independent and concerted functions of MCK2 serving as chemokine and part of a gHgL entry complex shape antiviral immunity and virus dissemination.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Camundongos , Humanos , Citomegalovirus/metabolismo , Quimiocinas CC , Quimiocinas/metabolismo , Tropismo , Proteínas Virais/genética
2.
PLoS Pathog ; 13(4): e1006281, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28403202

RESUMO

Herpesvirus gH/gL envelope glycoprotein complexes are key players in virus entry as ligands for host cell receptors and by promoting fusion of viral envelopes with cellular membranes. Human cytomegalovirus (HCMV) has two alternative gH/gL complexes, gH/gL/gO and gH/gL/UL128,130,131A which both shape the HCMV tropism. By studying binding of HCMV particles to fibroblasts, we could for the first time show that virion gH/gL/gO binds to platelet-derived growth factor-α (PDGFR-α) on the surface of fibroblasts and that gH/gL/gO either directly or indirectly recruits gB to this complex. PDGFR-α functions as an entry receptor for HCMV expressing gH/gL/gO, but not for HCMV mutants lacking the gH/gL/gO complex. PDGFR-α-dependent entry is not dependent on activation of PDGFR-α. We could also show that the gH/gL/gO-PDGFR-α interaction starts the predominant entry pathway for infection of fibroblasts with free virus. Cell-associated virus spread is either driven by gH/gL/gO interacting with PDGFR-α or by the gH/gL/UL128,130,131A complex. PDGFR-α-positive cells may thus be preferred first target cells for infections with free virus which might have implications for the design of future HCMV vaccines or anti-HCMV drugs.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Linhagem Celular , Células Cultivadas , Citomegalovirus/genética , Fibroblastos/virologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Complexos Multiproteicos , Mutação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Recombinantes , Proteínas do Envelope Viral/genética , Vírion
3.
PLoS Pathog ; 11(2): e1004640, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25659098

RESUMO

Herpesviruses form different gH/gL virion envelope glycoprotein complexes that serve as entry complexes for mediating viral cell-type tropism in vitro; their roles in vivo, however, remained speculative and can be addressed experimentally only in animal models. For murine cytomegalovirus two alternative gH/gL complexes, gH/gL/gO and gH/gL/MCK-2, have been identified. A limitation of studies on viral tropism in vivo has been the difficulty in distinguishing between infection initiation by viral entry into first-hit target cells and subsequent cell-to-cell spread within tissues. As a new strategy to dissect these two events, we used a gO-transcomplemented ΔgO mutant for providing the gH/gL/gO complex selectively for the initial entry step, while progeny virions lack gO in subsequent rounds of infection. Whereas gH/gL/gO proved to be critical for establishing infection by efficient entry into diverse cell types, including liver macrophages, endothelial cells, and hepatocytes, it was dispensable for intra-tissue spread. Notably, the salivary glands, the source of virus for host-to-host transmission, represent an exception in that entry into virus-producing cells did not strictly depend on either the gH/gL/gO or the gH/gL/MCK-2 complex. Only if both complexes were absent in gO and MCK-2 double-knockout virus, in vivo infection was abolished at all sites.


Assuntos
Infecções por Citomegalovirus/transmissão , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Tropismo Viral/fisiologia , Animais , Infecções por Citomegalovirus/metabolismo , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos BALB C
4.
PLoS Pathog ; 9(7): e1003493, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935483

RESUMO

Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex. Here, we show that the MCMV CC chemokine MCK-2 forms a complex with the glycoprotein gH, a complex which is incorporated into the virion. We could additionally show that mutants lacking both, gO and MCK-2 are not able to produce infectious virus. Trans-complementation of these double mutants with either gO or MCK-2 showed that both proteins can promote infection of host cells, although through different entry pathways. MCK-2 has been extensively studied in vivo by others. It has been shown to be involved in attracting cells for virus dissemination and in regulating antiviral host responses. We now show that MCK-2, by forming a complex with gH, strongly promotes infection of macrophages in vitro and in vivo. Thus, MCK-2 may play a dual role in MCMV infection, as a chemokine regulating the host response and attracting specific target cells and as part of a glycoprotein complex promoting entry into cells crucial for virus dissemination.


Assuntos
Quimiocinas CC/metabolismo , Infecções por Herpesviridae/imunologia , Imunidade Inata , Macrófagos/imunologia , Muromegalovirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Células Cultivadas , Quimiocinas CC/química , Quimiocinas CC/genética , Feminino , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Macrófagos/patologia , Macrófagos/virologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Macrófagos Peritoneais/virologia , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/imunologia , Mutação , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Organismos Livres de Patógenos Específicos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas Virais/química , Proteínas Virais/genética , Vírion/imunologia , Vírion/fisiologia
5.
J Virol ; 85(19): 10346-53, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813614

RESUMO

Murine cytomegalovirus (MCMV) Smith strain has been cloned as a bacterial artificial chromosome (BAC) named pSM3fr and used for analysis of virus gene functions in vitro and in vivo. When sequencing the complete BAC genome, we identified a frameshift mutation within the open reading frame (ORF) encoding MCMV chemokine homologue MCK-2. This mutation would result in a truncated MCK-2 protein. When mice were infected with pSM3fr-derived virus, we observed reduced virus production in salivary glands, which could be reverted by repair of the frameshift mutation. When looking for the source of the mutation, we consistently found that virus stocks of cell culture-passaged MCMV Smith strain are mixtures of viruses with or without the MCK-2 mutation. We conclude that the MCK-2 mutation in the pSM3fr BAC is the result of clonal selection during the BAC cloning procedure.


Assuntos
Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Cromossomos Artificiais Bacterianos , Mutação da Fase de Leitura , Muromegalovirus/genética , Muromegalovirus/patogenicidade , Glândulas Salivares/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Deleção de Sequência , Carga Viral , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...